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ABSTRACT
Equivalence (the equal-area property of a map projection) is important to some
categories of maps. However, unlike for conformal projections, completely general
techniques have not been developed for creating new, computationally reasonable
equal-area projections. The literature describes many specific equal-area projections
and a few equal-area projections that are more or less configurable, but flexibility
is still sparse. This work develops a tractable technique for generating a continuum
of equal-area projections between two chosen equal-area projections. The technique
gives map projection designers unlimited choice in tailoring the projection to the
need. The technique is particularly suited to maps that dynamically adapt optimally
to changing scale and region of interest, such as required for online maps.

KEYWORDS
Map projection; dynamic mapping; equal-area projection; adaptable projection;
animated map; area-preserving homotopy; blended projection
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1. Introduction

The increasing use of interactive, adaptable maps, particularly in software hosted on
the World Wide Web, often begs for seamless transitions between map projections.
Compare, for example, the adaptive projection system devised by Jenny (2012) or
the National Geographic animation created by Strebe, Gamache, Vessels, and Tóth
(2012). Strebe (2016) developed an equal-area, continuous hybrid between Bonne and
Albers projections for dynamic or animated maps as a solution to a particular case.

If the adaptable map does not need to preserve areas, then hybridization can be
simple, such as a linear combination of the initial and the terminal projections. How-
ever, even that simplicity can be deceptive. If the two projections diverge sufficiently
in planar topology, then linear combinations could result in unacceptable behavior
such as the intermediate projection overlapping itself. An overlap means that two or
more points from the sphere map to the same point on the plane, and this happens
across a region. See, for example, the “wild vines” Snyder (1985, 86) describes for his
GS50 projection outside its useful domain.

When the initial and terminal projections (hereafter, the limiting projections) are
equal-area, and area must be preserved throughout intermediate projections, solutions
are much more difficult. This is because linear combinations of equal-area projections
do not, themselves, preserve area in the general case, as shown below. Therefore efforts
to create such transitional projections tended to be bespoke because general techniques
for hybridizing equal-area projections had not been developed. Some efforts likely never
came to fruition because the hybridization proved intractable.

To hybridize two equal-area projections, we would like to do something like

C = kB + (1− k)A

where k is a parametric constant such that 0 ≤ k ≤ 1, A is the desired initial projection,
B is the desired terminal projection, and C is the resulting hybrid. This would yield
a smooth transition from A to B. A continuum of maps between two projections via
a parameter in the range [0, 1] is called a homotopy in algebraic topology and related
fields.

However, usually the hybrid projection C would not preserve areas. This is demon-
strated next. For a spherical projection, the property of equivalence is detected by the
following analog to the Cauchy-Riemann equations (Snyder, 1987, 28):

∂y

∂ϕ

∂x

∂λ
− ∂y

∂λ

∂x

∂ϕ
= s cosϕ

where s is constant throughout the map, ϕ is the latitude, and λ is the longitude.
Equivalence can be defined strictly or loosely; Snyder’s definition is strict in that s =
R2 only, where R is the radius of the globe. By this definition, any region on the globe
has the same area on the map. By a looser definition, smay be any finite, nonzero value.
The rationale in the looser case is that all regions on the map remain proportioned
correctly to each other. The looser definition permits an affine transformation, as any
constant, nondegenerate, 2 × 2 real-valued matrix M , to be applied to the cartesian
coordinates of an equal-area mapped function, resulting in a new equal-area projection.
In this case s = R2/det (M). When s is not relevant, we assume s = 1 for a unit sphere
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and identity linear transformation, giving:

∂y

∂ϕ

∂x

∂λ
− ∂y

∂λ

∂x

∂ϕ
= cosϕ. (1.1)

For C → x, y as a linear combination of the two projections A → xA, yA and B →
xB, yB, preserving areas would require that

∂[kyB + (1− k)yA]

∂ϕ

∂[kxB + (1− k)xA]

∂λ
−

∂[kyB + (1− k)yA]

∂λ

∂[kxB + (1− k)xA]

∂ϕ
= cosϕ. (1.2)

However, simultaneously,

∂yA
∂ϕ

∂xA
∂λ
− ∂yA

∂λ

∂xA
∂ϕ

= cosϕ

∂yB
∂ϕ

∂xB
∂λ
− ∂yB

∂λ

∂xB
∂ϕ

= cosϕ

which, substituting into Equation (1.2), implies

∂yB
∂ϕ

∂xA
∂λ

+
∂yA
∂ϕ

∂xB
∂λ
− ∂yB

∂λ

∂xA
∂ϕ
− ∂yA

∂λ

∂xB
∂ϕ

= 2 cosϕ. (1.3)

This equality places stringent constraints beyond just equivalence upon choices for
A and B. Therefore linear combinations of arbitrary choices for A and B will not
themselves be equivalent.

New equal-area projections can be generated via a variety of simple transformations
applied to known equal-area projections. As mentioned above, any nondegenerate,
affine transformation to an equal-area projection yields an equal-area projection. Or,
all mapped points sharing the same y value can deform into the arc of a circle, with
neighboring horizontals becoming concentric arcs. Applied to the sinusoidal projection,
this technique results in the Bonne projection. Other methods appear in the literature,
such as Umbeziffern (renumbering), first used by Hammer to develop the Hammer from
the Lambert azimuthal equal-area, and then named and elaborated on by Wagner
(1949) for several of his projections. And so on.

More sophisticated new equal-area projections can be created at will because any
equal-area projection can become an area-preserving transformation applied to any
other equal-area projection, given suitable scaling. This was the basis for the Strebe
1995 projection [Šavrič, Jenny, White, and Strebe (2015)], for example, where Strebe
scales the Eckert IV projection to fit within the confines of a Mollweide projection;
back-projects the results to the sphere; and then forward projects to the plane via the
Hammer. However, results depend on the projections available rather than on specific
needs of the projection designer, and also do not obviously contribute to hybridization.

Some techniques for generating new equal-area projections were developed to ap-
proximate desirable distortion characteristics. Snyder (1988) gives a transformation
that can be applied to Lambert azimuthal equal-area and repeatedly thereafter in or-
der to coax the angular isocols toward desired paths. Canters (2002) gives polynomial
transformations for the same purpose that can be applied to any equal-area map and
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optimized via, for example, simplex minimization against specified constraints. Neither
technique appears obviously adaptable to generating homotopies. Given the amount
of calculation involved, neither technique would be well suited to dynamic maps in
any case.

2. Background

In describing local distortion on a map projection, the usual metric is Tissot’s indica-
trix, presented in 1859 by Tissot (1881). The indicatrix projects an infinitesimal circle
from the manifold to the plane. On smooth portions of the map, the circle deforms into
an ellipse with semimajor axis a and semiminor axis b. If a× b is constant throughout
the indicatrices of the map, then the map is equal-area. If a = b throughout the map,
then the map is conformal.

As noted by Laskowski (1989), Tissot’s indicatrix of a projected point can be de-
scribed via the singular value decomposition of the point’s column-scaled Jacobian
matrix. Hereafter the Jacobian will be denoted J . In the case of a sphere-to-plane pro-
jection, the affine transformation representing the complete Tissot ellipse T is given
by

T = J ·
[

secϕ 0
0 1

]
. (2.1)

In particular, the areal inflation or deflation (or generically flation, as per Battersby,
Strebe, and Finn (2017)) can be calculated as

s = detT. (2.2)

The term isocol appears in Section 1. The term is specific to cartographic maps, and
denotes a level curve of distortion. In the case of a conformal map, it is the level curve of
constant scale factor. In the case of an equal-area map, it is the level curve of constant
angular deformation, which also implies Tissot ellipses of constant dimensions. For
maps that are neither conformal nor equal-area, the term is not defined, although
isocols of angular deformation and isocols of flation both apply and generally do not
coincide.

The term standard parallel appears in the text as an attribute of a conic projection.
This is the cartographic term for the geographic parallel along which the conic projec-
tion is undistorted. Conceptually, it is the circle of tangency of the cone on the sphere.
When there are two standard parallels, they are, conceptually, the secant circles—
that is, where the cone cuts through the sphere. “Conceptually,” because generally
the projections involved are not literal perspectives.

3. Development

3.1. Observations

1. By the loose definition of equal-area transformation, an equal-area projection A from
manifold (such as sphere) to plane, then scaled by s, and thence deprojecting back to
the manifold via the inverse A′—that is, A′s = A′ (s ·A)—results in the area-preserving
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transformation A′s from the manifold to itself. This must be true because each step
preserves relative areas. In general, the result covers only part of the manifold, and
indeed s ought to be chosen such that s ≤ 1. Hereafter we refer to this parametric s
as k such that [0 ≤ k ≤ 1].

2. Projecting A′k to the plane via some other area-preserving transformation B yields
an equal-area projection Ck.

3. Scaling Ck by 1/k yields C having the same nominal scale as A: that is, any
region in A will have the same area measure in C, insofar as Bs area change is unity.

4. As k → 0, the fraction of projectionBs range that is devoted to the transformation
shrinks toward a single point, and so Cs distortion characteristics approach being
described by a single Tissot indicatrix.

5. If A′k is contrived such that an “anchor point” P ′ on the manifold remains undis-
torted by A′ (k ·A) /k, and contrived such that the Tissot indicatrix at P = B (P ′) /k
shows no distortion, then C will be merely k ·A as k → 0. This is true despite having
been projected by B because B has no distortion locally at B and therefore does not
contribute to projection.

6. If k is chosen to be 1, then the deprojection procedure giving A′k results in full
coverage of the original manifold, undistorted, and therefore C will be merely B.

7. In a “reasonable” projection B, distortion increases away from P in most direc-
tions if P has no distortion.

These observations lay the groundwork for the technique. While the observations
above, and the technique to follow, are applicable to any sufficiently smooth manifold,
the remainder of this monograph discusses the sphere specifically, but without loss of
generality.

3.2. Synthesis

Let k represent the weight of B desired in the blended projection, such that (1− k)
shall be the weight of A. By Observations (3) and (5), when k = 0, we have k·A/k = A.
By Observation (6), when k = 1, we have B.

For k in (0, 1), when k is small, the contribution of B in the description of C is small.
This is because the distortion of B is low in the neighborhood of P and therefore, by
Observations (5) and (7), its distinguishing characteristics as a projection are small in
that region. Meanwhile, the heavy reduction in As scale due to small k places all of
A into that region of low distortion in B. That leaves As distortion characteristics to
dominate.

Conversely, as k increases, the portion of Bs range that A fills increases, and this
increases the influence of Bs unique characteristics. Simultaneously, As characteristics
diminish because the sphere-to-sphere mapping from Observation (2) places points
closer and closer to their original location as k increases.

We thereby have a continuum of equal-area map projections. These features fulfill
the requirements for an area-preserving homotopy. The technique is illustrated in
Figure 1.

Expressing this synthesis using notation introduced heretofore, and presuming no
distortion at P = B (P ′),

C = B(A′ [k ·A])/k. (3.1)

In practice, our choice of anchor point P might vary as k varies, so that when k
is 0, P has no distortion, but as k increases, P moves toward some center common
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A B

k∙A

B(A′(k∙A))/k

A

     
 B(A′(

k∙A))
A′(k∙A) P

P′

k

Figure 1. How the homotopy works, k ≈ 1/2.
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to both projections, such as a point of bilateral symmetry. This might be our choice
if that common center is distorted in B. Or, perhaps we keep P constant but apply
an affine transformation MB to B for large k in order to eliminate the distortion at
the common center P , with MB approaching identity as k → 0. We express this more
general latter case as

C = MB ·B(A′ [k ·A])/k (3.2)

where, for example,

NB = k · I + (1− k) · T−1B (P )

MB =
NB√

detNB
(3.3)

with I as the identity matrix and TB as given in Eq. 2.1 for projection B. This yields
a constant determinant of 1 across the parameterization, and therefore preserves area.
Obviously other ways of constructing MB are possible.

Other ways of selecting the anchor point and parameterizing the projections involved
might present themselves, depending upon the limiting projections. The example in
Appendix Section 6.2 demonstrates such a case.

Note a qualification in Observation (5): P ′ must remain undistorted in A′k. This is
crucial to the technique because the pre-image of k · A has to retain the distortion
characteristics of k · A as k → 0. If it does not, then B (A′k) /s will not result in A as
k → 0. Therefore, the scaling by k on the plane must be arranged such that P = A (P ′)
anchors the projection, with the rest shrunk toward it radially. What is important is
that P ′ round-trips to its original position: That is, P ′ = A′ (k ·A [P ′]).

It may be that A (P ′) does not remain undistorted for the desired P ′. For example,
if A and B are equatorial pseudocylindric projections, and A is distorted at the center
as a vertical elongation, and the desired homotopy would consist of pseudocylindric
projections throughout, then more needs to be done. A′ yields an undistorted P ′

because it undoes the distortion A enacted. When then projected by B, if B (P ′)
remains undistorted, then C will be squashed compared to A as k → 0. The stretch
could be re-introduced after B. The stretch after B would be linear against k, such
that k = 0 gives the full compression/stretch, and k = 1 gives none. In the general
case this can be expressed as

C = MA ·MB ·B(A′ [k ·A])/k (3.4)

with MB as from Equation (3.3) and MA being the analogous correction for A:

NA = k · I + (1− k) · TA (P )

MA =
NA√

detNA
, (3.5)

noting that it is not the inverse T−1A (P ) involved, but TA(P ) itself because the goal is
to apply the original distortion, not to undo it.

As seen in the examples in Appendix Section 6.2, MA and MB are not inevitable
even when P or P ′ is distorted, and, in fact, the inverse transformation from k ·A back
to the sphere need not even use A′: Any equal-area projection that limits to A when
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k = 0 could potentially be used. MA and MB are just general rote devices for reliably
achieving a homotopy.

4. Characteristics

4.1. Computational cost

The computational cost of this technique is the cost of A, of A′, of B, and a little
overhead for scaling and any other adjustments the projection designer might want.
Obviously, this is far cheaper than a direct interpretation of the partial derivatives
of the projections in play, which would imply computing a double integral for every
point. Despite the cheap cost, the result is still superior than the näıve double integral
because this technique will not result in overlaps.

4.2. Asymmetry

This technique is sensitive to which of the two chosen projections gets assigned to be
A and which to B. That is, the homotopy from A to B differs from the homotopy
from B to A. Therefore the homotopy is directionally asymmetric.

Another asymmetry arises due to the use of linear parameter k as a scale factor
in both dimensions when constructing A′s. A linear progression in k generally yields
a weight that favors A. Using

√
k in place of k throughout the formulations yields a

subjectively more linear homotopy.

4.3. Distortion

Distortion characteristics of homotopies between arbitrary pairs of limiting projections
are difficult to speak of in generalities. They tend to be highly contingent upon the
homotopy. However, if the two limiting projections are chosen such that both have
low distortion in the region in which they anchor to each other, we can expect the
homotopy to have low distortion throughout the same region. In those cases, regions
of unexpected or wildly varying distortion tend to occur only toward the boundary of
the hybrid projection, if at all. When boundaries are topologically similar (such as for
two pseudocylindric projections), the resulting patterns of distortion can be intuited
readily.

4.4. Outer boundary

Projections whose planar topologies are the same retain the common topology under
the homotopy. Hence, the continuum between two equatorial pseudocylindric projec-
tions with pole-lines, for example, continues to have the outer meridian, duplicated left
and right, as its outer boundary, along with a line for the pole. If they have pointed
poles, then so will the continuum. If they have flat poles, then so will the continuum. If
the initial projection is pointed and the other not, then the continuum will be pointed
except at the flat extreme, but the angle of incidence may be imperceptibly slight
approaching the flat pole extreme. If the initial projection has a flat pole but the ter-
minal is pointed, then the continuum will be flat throughout, with width shrinking to
a point at the terminal extreme.

9



When the limiting projections’ topologies differ, little can be said generally other
than that the solution becomes specific to the projections. The description of the
boundary is a tractable calculation, but not necessarily simple or convenient. The
Lambert azimuthal-to-Albers continuum of Appendix Section 6.2 is an example of a
nontrivial topological evolution.

4.5. Applicability to conformal and other maps

In cartography, one might need a homotopy between two conformal projections. Due
to the fact that any analytic function acting on a conformal map results in another
conformal map, a wealth of functions can be drawn upon and composed in order to
do this. However, when acting purely on the plane, nothing guarantees a priori that a
given mapping will behave well, with the potential for the map failing bijection criteria
being an acute concern. While it is common for cartographic maps not to be invertible
at singularities or along some boundaries, overlapping of regions is not acceptable for
ranges that must be preserved in the mapping. Näıve blending techniques, such as
linear combinations of the two projected spaces, hazard such overlapping.

Fortunately, nothing about this homotopy is specific to equal-area projections. As
a general topological procedure, it can be used for any sufficiently smooth mapping
from any sufficiently smooth manifold. It can be used equally successfully for conformal
maps, and indeed, it preserves conformality in the intermediate maps. The only caveat
is that the affine transformations MA and MB must not contain shear components,
but instead only scale isotropically and/or rotate. Since the shear components in MA

and MB as given in Section 3.2 are present only to correct for non-conformal behavior
in equal-area maps, they could have no purpose in a conformal mapping anyway.

Likewise, this homotopy can be developed between aphylactic (neither conformal
nor equal-area) projections, with little expectation of preserving identifiable proper-
ties other than topological integrity. Or, for example, it can be used to synthesize a
progression between some conformal map and some equal-area map. Such a progres-
sion has didactic value and, in dynamic maps, perhaps even practical value when the
thematic focus of the map changes or when zooming out from large scale to medium
and small scales.

5. Conclusion

By combining several observations about equal-area maps in a novel way, this research
produced a tractable technique for hybridizing any two equal-area projections. Using
such transitions, a map designer might find combinations that yield distortion char-
acteristics more favorable to the region being mapped than are otherwise available.
Because of the generality of the technique, and the fact that its parameterization op-
erates on the topology of the sphere (or ellipsoid or other manifold), the technique
can hybridize even projections of otherwise incompatible planar topologies, such as an
azimuthal and a conic projection. The problem of tailored projections has been acute
for equal-area needs, since no simple, general system existed. This new technique fills
the void.

The same ability to parameterize for new projections between known projections
makes the technique well suited for dynamic mapping and animations. For the first
time, equal-area projections can dynamically adapt optimally for the entire region
brought into view when panning and zooming.
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The technique is computationally cheap (that is, on the order of the limiting projec-
tions involved); completely general; and not limited to equal-area maps. Because the
technique is built upon the topology of the surface being projected, rather than acting
purely in cartesian space, overlapping can be avoided with minimal precautions, unlike
a simple linear combination of the limiting projections. Therefore, the technique ap-
plies equally well to conformal projections, projections that are neither conformal nor
equal-area, and even hybridizing conformal projections with equal-area projections.
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Appendix: Examples

6.1. Sinusoidal and cylindrical equal-area

The cylindrical equal-area and the sinusoidal projections are two of the simplest equal-
area projections from sphere to plane. The cylindrical equal-area projection is defined
as

x = λ cosϕ1

y = secϕ1 sinϕ (6.1)

with ϕ1 being the latitude along which scale is correct and conformality preserved. It
has Jacobian [

∂x
∂λ = cosϕ1

∂x
∂ϕ = 0

∂y
∂λ = 0 ∂y

∂ϕ = secϕ1 cosϕ

]
. (6.2)

The projection’s inverse is

ϕ = arcsin (y cosϕ1)

λ = x secϕ1. (6.3)

The sinusoidal is defined as

x = λ cosϕ

y = ϕ. (6.4)

If we let A be the cylindrical equal-area and B the sinusoidal, then A′ is given by
the inverse of k ·A like so:

ϕ′ = arcsin (k sinϕ)

λ′ = kλ. (6.5)
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Notice that ϕ1 does not appear in A′; regardless of choice for ϕ1, they all result in the
same A′. Any A′ will undo the distortion enacted by A at P ′, but in this case, the
influence of ϕ1 gets removed not only from P ′ but throughout the projection because
the projection parameterized by any ϕ1 is just an affine scaling of the same underlying
projection. This removal will be counteracted by MA, computed as

NA = k · I + (1− k) · TA (P ) =

[
k + (1− k) cosϕ1 0

0 k + (1− k) secϕ1

]

MA =
NA

detNA
=

 √k+(1−k) cosϕ1

k+(1−k) secϕ1
0

0
√

k+(1−k) secϕ1

k+(1−k) cosϕ1


by Equations (2.1), (3.4), and (6.2), given P ′ = (0◦E, 0◦N). No correction is required
for B because sinusoidal has no distortion at P , so MB = I and can be ignored.
B (A′) /k is given by applying Equation (6.4) to Equation (6.5):

x = λ

√
1− k2 sin2 ϕ

y = arcsin (k sinϕ) /k. (6.6)

By Equations (3.4) and (6.6), then,

C =

 √k+(1−k) cosϕ1

k+(1−k) secϕ1
0

0
√

k+(1−k) secϕ1

k+(1−k) cosϕ1

 · [ λ
√

1− k2 sin2 ϕ
arcsin (k sinϕ) /k

]
(6.7)

and thereby the homotopy from cylindrical equal-area to sinusoidal is

x = λ

√
1− k2 sin2 ϕ

√
k + (1− k) cosϕ1

k + (1− k) secϕ1

y =
arcsin (k sinϕ)

k

√
k + (1− k) secϕ1

k + (1− k) cosϕ1
. (6.8)

Parameterized with k = 0.226 and ϕ1 = 0 (such that Equation (6.6) suffices), this
formulation results in a projection that is practically indistinguishable from the pseu-
docylindric limiting form of the equal-area pseudoconic projection devised by Nell
(1890). Nell’s is the first known equal-area pseudocylindric with a pole-line, and is a
compromise between the sinusoidal and the equal-area cylindric with ϕ1 = 0 (Lam-
bert’s). Unlike Nell, no iteration is required in computing Equation (6.8), illustrating
the technique’s characteristic computational efficiency.

To illustrate the asymmetry noted in Section 4.2, we give the reverse homotopy
from sinusoidal to cylindrical equal-area, omitting the intermediate calculations:

x =
λ cosϕ cosϕ1

cos (kϕ)

√
k + (1− k) secϕ1

k + (1− k) cosϕ1

y =
sin (kϕ) secϕ1

k

√
k + (1− k) cosϕ1

k + (1− k) secϕ1
. (6.9)
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This projection is the same as Kavraiskiy’s fifth, matching his recommended pa-
rameterization at k = 0.738340936 and ϕ1 = 29.8924267◦.

6.2. Lambert azimuthal equal-area and Albers conic

Albers and Lambert azimuthal equal-area have two highly divergent topologies. The
perimeter of Albers is the same as a pseudocylindric projection’s: pole lines and the
180th meridian replicated left and right. Lambert, on the other hand, projects the
center’s antipodal point as a circle of radius 2, given unit sphere. With the constraint
that the Lambert be centered on the pole, a homotopy for the two is trivial because
Lambert is a limiting form of Albers, with both standard parallels being the pole.

When Lambert needs to be centered elsewhere, however, no obvious solution makes
itself known. Jenny (2012) proposed a transformation from Lambert azimuthal to
transverse Lambert cylindrical equal-area projection through Albers by using the
limiting-form relationship of Lambert to Albers, with other adjustments. However,
in order to keep the region of interest away from the split that appears as soon as the
homotopy’s parameter leaves 0, the Lambert azimuthal must be rotated, pushing the
region of interest into higher-distortion portions of the projection. This is not satisfac-
tory because the region of interest is where low distortion is most desired. Jenny and
Šavrič (2017) acknowledge this shortcoming and propose an improved transition via a
transverse Wagner. However, applicability of the Wagner route is limited to “portrait
format” maps. Jenny writes,

A conic transformation remains in the adaptive composite projection for landscape-
format maps for transitioning between the azimuthal (for maps at continental scales) and
the conic (for larger scales) projections... However, distortion caused by the conic trans-
formation is comparatively large... Improving this transformation between the Lambert
azimuthal and the Albers conic projections is an open challenge.

Here we meet this challenge.
The oblique Lambert azimuthal equal-area from the sphere is formulated as

z =
√

2/
√

1 + sinϕ3 sinϕ+ cosϕ3 cosϕ cosλ

x = z cosϕ sinλ

y = z (cosϕ3 sinϕ− sinϕ3 cosϕ cosλ) (6.10)

after Snyder (1987), with its inverse being

ρ =
√
x2 + y2

c = 2 arcsin
ρ

2
ϕ = arcsin

(
cos c sinϕ3 + yρ−1 sin c cosϕ3

)
λ = arctan (x sin c, ρ cosϕ3 cos c− y sinϕ3 sin c) (6.11)

and arctan being the typical two-argument form yielding the full range [−π, π). ϕ3 is
the latitude at which no distortion is wanted, achieved at the central meridian only.
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The standard Albers from the sphere is formulated as

n =
sinϕ1 + sinϕ2

2

ρ =

√
cos2 ϕ1 + 2n (sinϕ1 − sinϕ)

n
θ = nλ

x = ρ sin θ

y = −ρ cos θ. (6.12)

Its inverse is not needed here because Albers serves as B, for which only forward is
used.

Let Lambert azimuthal equal-area be A and Albers be B. Lambert is undistorted
at its point of obliquity (ϕ3, 0). Albers is undistorted all along selectable constant
latitudes ϕ1 and ϕ2. The angular extent of the Albers wedge is determined by n. Let
us assume that sinϕ3 is chosen to be n to place it about halfway between the standard
parallels. Albers would be distorted at ϕ3—in fact, it reaches a local maximum there—
unless ϕ1 = ϕ2 = ϕ3. Hence something must be done for small k so that the area
around ϕ3 has low distortion then. We could address this by means of MB as described
in equation 3.2.

Another method presents itself based on the characteristics of Albers. We are free
to vary the standard parallels insofar as the sum of their sines is constant so that
we do not vary the angular extent of the cone. Hence, if we start at k = 0 with
ϕ1k = ϕ2k = ϕ3, and gradually move ϕ1k and ϕ2k apart as k → 1, we achieve the
needed effect. So,

sinϕ1k = sinϕ1 + (1− k) (sinϕ3 − sinϕ1)

sinϕ2k = sinϕ2 + (1− k) (sinϕ3 − sinϕ2) .

This frees us to use the simplest form of the transformation. Given A as Equation
(6.10), A′ as Equation (6.11), and B as Equation (6.12), the homotopy follows im-
mediately from Equation (3.1). The configurable parameters ϕ1 and ϕ2 are taken as
ϕ1k and ϕ2k for each k. Delineated, using definitions from Equations (6.10) and (6.12)
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unless replaced here:

xL = kz cosϕ sinλ

yL = kz (cosϕ3 sinϕ− sinϕ3 cosϕ cosλ)

ρL =
√
x2L + y2L

cL = 2 arcsin
ρL
2

ϕL = arcsin
(
cos cL sinϕ3 + yLρ

−1
L sin cL cosϕ3

)
λL = arctan (xL sin cL, ρL cosϕ3 cos cL − yL sinϕ3 sin cL)

ρA =
√

cos2 ϕ1k + 2n (sinϕ1k − sinϕL)

θ = nλL

x =
ρA sin θ

k

y =
−ρA cos θ

k
. (6.13)

The results are as shown in Figure 2, with distortion diagrams as Figure 3. We
do not address the matter of the perimeter here; its description is complicated and
not instructive for other homotopies. Most practical uses of this particular homotopy
would bound the region well short of the topological perimeter by some easily described
means such as a rectangle or as north/west/south/east extents, mapped.

Figure 2. Homotopy from Lambert azimuthal equal-area to Albers,
√
k in 0.2 increments.

In a reverse homotopy going from Albers to Lambert, we might again choose to
situate P about halfway between the two standard parallels so that we converge most
directly from Albers to Lambert azimuthal. To achieve that, we could use MA as
described in equation 3.2. This would correct for the fact that P reaches a local
maximum of distortion on the Albers, whereas if left uncorrected, P would be the
point of no distortion and the standard parallels would gain distortion.
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Figure 3. Patterns of maximum angular deformation, 10◦ increments, deeper color signifying greater distor-

tion.

However, just as in the forward homotopy, a better method suggests itself. Ideally,
we would want the benefits of Albers to dominate for small k. The benefit of Albers
is in the two standard parallels having no distortion. We can protract those benefits
beyond the vicinity of k = 0, at least on the Albers side of the transformation. We can
do this by using a different Albers parameterization for the inverse, one whose forward
we will call Â. Its parameterization is contrived so that Â has standard parallels that
coincide in cartesian space with the standard parallels of k · A. (See Figure 4.) This

works because as k → 0, Â→ A. Because the paths of no distortion on Â coincide with
those on k ·A, no correctional affine transformation is needed and the homotopy retains
more “Albers-ness” over the low parametric space as compared to a rote approach
using MA.

Â

k∙A

Figure 4. Â with standard parallels (green dashes)

coincident to those of k ·A (solid green).

Without getting into computational
details, the result of this method from
Albers to Lambert, and the roundtrip
return via Equation (6.13), can be seen
in the video “Albers-Lambert round-trip
homotopy” in the Supplementary Mate-
rial. The corresponding animation show-
ing distortion can be seen in the video
“Albers-Lambert azimuthal round-trip
homotopy distortion” in the Supplemen-
tary Material. Lower-quality versions
can also be found at https://youtu

.be/D1CuUPi2yA0 and https://youtu

.be/AcTFAXPLReE.
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